基于机器视觉的机械加工零件表面微缺陷检测方法

张思婉, 刘华洲

张思婉, 刘华洲. 基于机器视觉的机械加工零件表面微缺陷检测方法[J]. 机械研究与应用, 2023, 36(4): 31-33. DOI: 10.16576/j.ISSN.1007-4414.2023.04.009
引用本文: 张思婉, 刘华洲. 基于机器视觉的机械加工零件表面微缺陷检测方法[J]. 机械研究与应用, 2023, 36(4): 31-33. DOI: 10.16576/j.ISSN.1007-4414.2023.04.009
ZHANG Si-wan, LIU Hua-zhou. Machine Vision-Based Detection Method for Surface Micro-Defect of the Machined Parts[J]. Mechanical Research & Application, 2023, 36(4): 31-33. DOI: 10.16576/j.ISSN.1007-4414.2023.04.009
Citation: ZHANG Si-wan, LIU Hua-zhou. Machine Vision-Based Detection Method for Surface Micro-Defect of the Machined Parts[J]. Mechanical Research & Application, 2023, 36(4): 31-33. DOI: 10.16576/j.ISSN.1007-4414.2023.04.009

基于机器视觉的机械加工零件表面微缺陷检测方法

详细信息
    作者简介:

    张思婉(1983-),女,河南南阳人,工程硕士,副教授,研究方向:机械设计制造及其自动化

  • 中图分类号: TP391.41

Machine Vision-Based Detection Method for Surface Micro-Defect of the Machined Parts

  • 摘要: 为提高微缺陷检测结果精度、提升机械加工零件外观质量,该文引进了机器视觉技术,以某机械生产制造单位为例,设计了一种针对零件表面微缺陷的全新检测方法。根据机器视觉技术的应用需求,搭建了集成工业相机、采集装置、照射光源等为一体的扫描装置,采集零件表面图像;对采集的原始图像进行均值滤波处理,去除图像中可能对缺陷区域的判别造成干扰的因素与噪声;采用阈值分割的方式,提取并划分机械加工零件表面的微缺陷区域;采用提取图像边缘算子的方法,计算零件表面原始图像与待检测图像之间的像素相关性,通过对零件表面微缺陷灰度性质点的匹配,完成检测方法的设计。通过对比实验证明:该方法不仅可以精准检测机械加工零件表面微缺陷,还可以检测到具体的缺陷类别。
    Abstract: In order to improve the precision of micro-defect detection results and improve the appearance quality of machined parts, the machine vision technology is introduced in this paper. Taking a mechanical manufacturing unit as an example, a new technical method for micro-defects on the surface of parts is designed. According to the application requirements of machine vision technology, a scanning device integrating industrial camera, acquisition device and illumination light source is built to collect the surface image of parts. The collected original image is processed by mean filtering to remove the interference of relevant factors and noise in the image on identification of the defect areas. The method of threshold segmentation is adopted to extract and divide the micro-defect areas on the surface of machined parts. The method of extracting image edge operator is used to calculate the pixel correlation between the original image of the part surface and the image to be detected, and design of the detection method is completed by matching the gray nature points of the part surface micro-defects. The comparative experimental results show that this method can not only accurately detect the surface micro-defects of machined parts, but also detect the types of defects.
  • [1] 庞宁雅, 杜安钰.基于YOLOV5s_Attention的表面缺陷检测的应用研究[J].现代电子技术, 2023, 46(3):39-46.
    [2] 邱 刚, 陈 杰, 张廼龙, 等.基于YOLOv3和HSV颜色空间的绝缘子低/零值故障诊断研究[J].高压电器, 2023, 59(1):148-153.
    [3] 徐 曙, 陈 潇, 张成巍, 等.基于改进EPF-Watershod耦合算法的高压电网压电陶瓷表面缺陷检测[J].陶瓷学报, 2022, 43(6):1113-1122.
    [4] 赵洲峰, 赵志勇, 邹君文, 等.基于声振信号组合特征的随机森林模型及其在绝缘子故障识别中的应用[J].广东电力, 2022, 35(12):93-100.
    [5] 唐嘉鸿, 黄 颀, 田春岐.基于改进Faster R-CNN的航空发动机制件表面缺陷检测算法[J]. 机床与液压, 2022, 50(23):93-98.
  • 期刊类型引用(6)

    1. 钱磊,李锦楼. 基于AI的机械零件加工缺陷检测工艺研究. 现代制造技术与装备. 2024(08): 110-112 . 百度学术
    2. 徐畅涵. 机械加工技术对金属零件加工的影响探究. 世界有色金属. 2024(15): 22-24 . 百度学术
    3. 柴泽南. 基于果蝇优化算法的机械零件加工缺陷检测方法分析. 中国机械. 2024(33): 82-85 . 百度学术
    4. 张鹏飞. 基于Faster R-CNN的精密零件表面缺陷识别. 现代制造技术与装备. 2024(12): 93-95 . 百度学术
    5. 刘伏涛. 基于机器视觉的光学镜头加工质量检测方法. 信息与电脑(理论版). 2023(20): 33-35 . 百度学术
    6. 滕超,陈明献,蔡文泉,刁文海. 基于YOLOv3算法的机械零件智能识别方法. 信息与电脑(理论版). 2023(21): 53-55 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  87
  • HTML全文浏览量:  1
  • PDF下载量:  15
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-01-09
  • 网络出版日期:  2024-02-20
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭