基于粒子群算法的挖掘机PD控制器设计

周有明, 刘凯磊, 强红宾, 康绍鹏

周有明, 刘凯磊, 强红宾, 康绍鹏. 基于粒子群算法的挖掘机PD控制器设计[J]. 机械研究与应用, 2023, 36(4): 63-66. DOI: 10.16576/j.ISSN.1007-4414.2023.04.018
引用本文: 周有明, 刘凯磊, 强红宾, 康绍鹏. 基于粒子群算法的挖掘机PD控制器设计[J]. 机械研究与应用, 2023, 36(4): 63-66. DOI: 10.16576/j.ISSN.1007-4414.2023.04.018
ZHOU You-ming, LIU Kai-lei, QIANG Hong-bin, KANG Shao-peng. Design of Excavator PD Controller Based on Particle Swarm Optimization Algorithm[J]. Mechanical Research & Application, 2023, 36(4): 63-66. DOI: 10.16576/j.ISSN.1007-4414.2023.04.018
Citation: ZHOU You-ming, LIU Kai-lei, QIANG Hong-bin, KANG Shao-peng. Design of Excavator PD Controller Based on Particle Swarm Optimization Algorithm[J]. Mechanical Research & Application, 2023, 36(4): 63-66. DOI: 10.16576/j.ISSN.1007-4414.2023.04.018

基于粒子群算法的挖掘机PD控制器设计

基金项目: 

国家自然科学基金资助项目:基于机液压差补偿的负载口独立控制系统主被动柔顺控制(编号:51805228)

江苏省高等学校自然科学基金项目:液压并联车载主动减振平台复合柔顺控制策略研究(编号:22KJB460021)

常州市科技支撑计划项目:基于机电液耦合系统的大型高速运载装备行驶非线性动力学行为研究及应用(社会发展)(编号:CE20209002)

常州市领军型创新人才引进培育项目资助:复杂工况下多轴线运载装备智能连杆转向系统研究及应用(编号:CQ20210093)

江苏省研究生科研与实践创新计划项目:液压挖掘机自动挖掘轨迹规划与多执行器协同运动控制(编号:SJCX21_1323)

详细信息
    作者简介:

    周有明(1996-),男,江西上饶人,硕士研究生,研究方向:机械与液压系统设计

  • 中图分类号: TP273.2

Design of Excavator PD Controller Based on Particle Swarm Optimization Algorithm

  • 摘要: 针对挖掘机精确轨迹控制问题,构建了挖掘机动力学模型,搭建了Simulink仿真环境下挖掘机动力学模块、PD控制系统模块和可自动调用的PD参数输入模块;通过PSO最优搜寻得到PD权重参数,然后在PSO程序中定义挖掘机动力学模型,最后在动态控制下进行一个闭环快速自适应整定联合仿真。仿真结果表明,采用基于粒子群算法的挖掘机PD控制器与传统的试凑法都能达到期望的轨迹控制,且都能较好地贴近理论值,但基于粒子群算法的挖掘机PD控制器能够快速自适应整定。在挖掘轨迹起始过程中,相较于试凑法中KPKV组合为200-5,粒子群算法的PD控制器要收敛近75%,降低了系统的稳态误差,大大提高了液压挖掘机的稳定性和精确性。
    Abstract: Aiming at the problem of precise trajectory control of excavator, the dynamics model for excavator is built, and the automatic call of excavator dynamics module, PD control system module and PD parameter input module is built under the Simulink simulation environment. The PD weight parameters are obtained through the PSO optimal search. The excavator dynamics model is defined in the PSO program, and a closed-loop fast adaptive tuning joint simulation is carried out under the dynamic control. The simulation results show that the excavator PD controller based on the particle swarm optimization algorithm can achieve the desired trajectory control compared with the traditional trial and error method, and both of them are close to the theoretical value; but the excavator PD controller based on the particle swarm optimization algorithm can quickly adapt to the adjustment, and it converges by 75% compared with the 200-5 combination of KP and KV in the trial and error method in the initial process of the excavation trajectory, which reduces the steady-state error of the system. It greatly improves the stability and accuracy of hydraulic excavator.
  • [1] 龙峰, 冯志君.基于AMESim的液压挖掘机负载模拟系统研究[J].机械研究与应用, 2020, 33(6):55-58+63.
    [2]

    Long C, Zeng-Guang H, Min T, et al. Adaptive Neural Network Tracking Control for Manipulators with Uncertainties[J].IFAC Proceedings Volumes, 2008, 41(2):2382-2387.

    [3] 胡海兵, 杨建德, 张结文, 等.基于分散化神经鲁棒控制的轨迹跟踪算法研究[J].现代电子技术, 2019, 42(3):111-115.
    [4] 李欣然, 樊永生.改进量子行为粒子群算法智能组卷策略研究[J].计算机科学, 2013, 40(4):236-239.
    [5] 赵亚琪, 王景成, 张浪文, 等.基于粒子群算法的TBM液压系PID参数优化[J].控制工程, 2016, 23(8):1242-1246.
  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-02-11
  • 网络出版日期:  2024-02-20
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭