基于实际场景的电动汽车能量回收优化研究

林欢, 何润, 黎炜琛, 汪爱军, 王哲

林欢, 何润, 黎炜琛, 汪爱军, 王哲. 基于实际场景的电动汽车能量回收优化研究[J]. 机械研究与应用, 2024, 37(3): 19-22. DOI: 10.16576/j.ISSN.1007-4414.2024.03.006
引用本文: 林欢, 何润, 黎炜琛, 汪爱军, 王哲. 基于实际场景的电动汽车能量回收优化研究[J]. 机械研究与应用, 2024, 37(3): 19-22. DOI: 10.16576/j.ISSN.1007-4414.2024.03.006
LIN Huan, HE Run, LI Wei-chen, WANG Ai-jun, WANG Zhe. Research on Energy Recovery Optimization of Electric Vehicles based on Driving Scenarios[J]. Mechanical Research & Application, 2024, 37(3): 19-22. DOI: 10.16576/j.ISSN.1007-4414.2024.03.006
Citation: LIN Huan, HE Run, LI Wei-chen, WANG Ai-jun, WANG Zhe. Research on Energy Recovery Optimization of Electric Vehicles based on Driving Scenarios[J]. Mechanical Research & Application, 2024, 37(3): 19-22. DOI: 10.16576/j.ISSN.1007-4414.2024.03.006

基于实际场景的电动汽车能量回收优化研究

详细信息
    作者简介:

    林欢(1989-),男,广西玉林人,中级工程师,研究方向:整车动力经济性能集成。

  • 中图分类号: U469.72

Research on Energy Recovery Optimization of Electric Vehicles based on Driving Scenarios

  • 摘要: 为降低整车能耗并提升续驶里程,该文以某款纯电动汽车的能量回收系统为研究对象展开研究,通过对比传统电动车的真空助力制动系统和智能制动系统,优化了不同系统的制动能量回收扭矩策略,并分析了两种制动系统的能量回收率。在对中国工况进行分析的基础上引入实际驾驶场景路况,通过仿真分析和台架测试对整车能耗和能量回收率进行了对比。结果表明:中国工况和实际驾驶场景工况智能制动系统的能量回收率比真空助力制动系统分别高1.4%和1.1%,整车百公里电耗分别降低0.7%和0.6%,达到了降低整车能耗的目的。
    Abstract: In order to reduce the vehicle energy consumption and improve the driving range, this paper takes the energy recovery system of a pure electric vehicle as the research object, compares the vacuum assisted braking system (EVP) and intelligent electro-hydraulic braking system (ibooster) of traditional electric vehicles, optimizes the braking energy recovery torque strategies of different systems, and analyzes the energy recovery rates of the two braking systems. On the basis of the analysis of Chinese operating conditions (CLTC-P), the actual driving scenario (R-cycle) road conditions are introduced, and the vehicle energy consumption and energy recovery rate are compared through simulation analysis and bench test. The results show that the energy recovery rate of ibooster under CLTC-P and R-cycle conditions is 1.4% and 1.1% higher than that of EVP, and the power consumption of the vehicle per 100 km is reduced by 0.7% and 0.6% respectively, achieving the purpose of reducing the energy consumption of the vehicle.
  • [1] 张俊智,吕辰,李禹橦,等.电驱动乘用车制动能量回收技术发展现状与展望[J].汽车工程,2014,36(8):911-918.
    [2] 张欢欢.某电动汽车ebooster智能刹车系统设计研究[J].汽车实用技术,2021,46(22):32-37.
    [3] 囤金军,宋金香.电子液压制动助力器设计与控制策略研究[J].山东交通科技,2019(3):149-152.
    [4] 谢飞,秦永法.新能源汽车再生制动控制策略研究综述[J].机械传动2020,44(9):169-175.
    [5] 李银刚.基于电动真空助力的纯电动汽车电液复合制动系统研究.镇江:江苏大学,2020.
    [6] 陈超.基于iBooster和ESC的纯电动车制动能量回收控制研究.合肥:合肥工业大学,2020.
    [7] 余志生.汽车理论[M].5版.北京:机械工业出版社,2009.
    [8] 孙庆乐,于海波,李贺龙,等.电动汽车滑行工况能量回收策略探究[J].车辆与动力技术,2020(2):1-5.
    [9] 王计广,李孟良,徐月云,等.电动汽车制动能量回收系统评价方法研究[J].汽车技术,2014(12):35-39.
    [10] 李青.电动汽车能量回收扭矩控制策略[J].机电技术, 2022(2):65-67.
计量
  • 文章访问数:  43
  • HTML全文浏览量:  3
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-26
  • 网络出版日期:  2024-07-02

目录

    /

    返回文章
    返回
    x 关闭 永久关闭