Design and Finite Element Analysis of an Internal Cooling Tool
-
摘要: 在机械加工时,车削温度对工件的表面加工质量和刀具的使用寿命具有重要影响。该文设计了一种具有高效内冷却性能的刀具,该刀具的刀片内部设有储液凹槽且在凹槽内安装菱形肋柱,可实现切削液对刀具的高效冷却,降低加工过程中刀具的切削温度。通过在转速600 r·min-1、切深1.5 mm、工件直径90 mm、进给率0.3 mm·r-1的实际加工工艺参数下的刀具各个切削力计算以及从切削加工的力学安全性出发的刀具结构强度分析得出,刀片在切削状态下,刀尖位置附近为应力最大处,最大等效应力可达到827.35 MPa。而刀片材料YT5的抗压屈服强度为4 GPa,远大于刀片在此切削状态下的最大应力值。故刀片内部的储液槽结构对刀片的结构强度没有太大的影响,能够满足刀片的切削强度要求。Abstract: In machining, the turning temperature has an important influence on the surface quality of the workpiece and the service life of the tool. A tool with high-efficiency internal cooling capacity is designed in this article. The insert is provided with a fluid storage groove and a diamond-shaped rib is installed in the groove, which can realize the efficient cooling of the tool by the cutting fluid and reduce the cutting temperature of the tool during processing. Under the actual machining process parameters of rotation rate 600 r·min-1, cutting depth 1.5 mm, workpiece diameter 90 mm, and feed rate 0.3 mm·r-1, the cutting forces on the tool are calculated. Starting from the mechanical safety of the tool during cutting, the structural strength of the tool is analyzed. It is concluded that the maximum equivalent stress can reach 827.35 MPa when the blade is in cutting state, with the highest stress located near the tool tip position. The compressive yield strength of blade material YT5 is 4 GPa, which is much greater than the maximum stress value of the blade in this cutting state. Thus the internal storage tank structure of the blade has little effect on the structural strength of the blade, and it can meet the cutting strength requirements of blade.
-
Keywords:
- internal cooling /
- tool /
- finite element analysis
-
-
[1] 韩荣第,王 杨,张文生,等.现代机械加工新技术[M].北京:电子工业出版社,2003. [2] 赵炳桢,商宏谟,辛节之.现代刀具设计与应用[M].北京:国防工业出版社,2014. [3] Zhao J,Yuan X,Zhou Y.Cutting performance and failure mechanisms of an Al2O3/WC/TiC micro-nano-composite ceramic tool[J].International Journal of Refractory Metals & Hard Materials,2010,28(3):330-337.
[4] Itoh H,Shimura S,Sugiyama K,et al. Improvement of Cutting Performance of Silicon Nitride Tool by Adherent Coating of Thick Diamond Film[J].Journal of the American Ceramic Society, 2010, 80(1):189-196.
[5] 杨 平.浅谈刀具磨损与刀具的使用寿命[J].重庆职业技术学院学报,2005(4):64-65. [6] 全燕鸣,何振威.车削碳钢中切削热的分配[J].中国机械工程,2006(20):2155-2158. [7] Weinert K,Inasaki I,Sutherland J W,et al.Dry Machining and Minimum Quantity Lubrication[J]. CIRP Annals- Manufacturing Technology,2004,53(2):511-537.
[8] 杨 潇,曹华军,陈永鹏,等.机床加工系统切削热全过程传递模型研究[J].制造技术与机床,2015(1):66-72. [9] 张慧萍,靳 杰,王尊晶,等.低温微量润滑高速车削高强度钢表面质量研究[J].哈尔滨理工大学学报,2019,24(6):33-40. [10] Shen B, Shih A J, Tung S C. Application of Nanofluids in Minimum Quantity Lubrication Grinding[J]. Tribology Transactions,2008,51(6):730-737.
[11] 唐运周,梁艳娟,王 鑫.微量润滑切削加工中润滑防锈工艺的优化研究及应用[J].模具制造,2019,19(8):70-73. [12] 刘永芳.绿色机械加工技术及应用研究[J].内燃机与配件,2020(12):129-130. [13] 贺爱东,叶邦彦,王子媛.内冷刀具低温微量润滑切削试验[J].工具技术,2015,49(7):21-24. [14] 刘志军.热管铣刀设计制备及其散热性能分析.广州:华南理工大学,2013. [15] 于凯强,郭文亮,贾 涛,等.车刀的内冷式结构优化与变形分析[J].工具技术,2017,51(10):44-47. [16] Li B,Rui Z. Friction and wear behaviours of YG8 sliding against austempered ductile iron under dry, chilled air and minimal quantity lubrication conditions[J]. Advances in Mechanical Engineering,2019,11(5):73-79.
[17] 李 静.一种车刀:中国,CN210435388U.2020-05-01. [18] 乔凌云.车刀刀杆冷却机构及冷却方法:中国,CN107030302B.2019-05-28. [19] 翟玉玲,夏国栋,刘献飞,等.复杂结构微通道热沉液体强化传热过程的热力学分析[J].化工学报,2014,65(9):3403-3409. [20] 齐景智.微通道热沉内流体流动与传热特性研究.北京:北京工业大学,2007. [21] 孙国祥,李永博,汪小旵,等.背负式喷雾器雾滴分布特性的CFD模拟与试验[J].农业工程学报,2012,28(20):73-79. [22] Yue C,Gao H,Liu X,et al.Analytical prediction of part dynamics and process damping for machining stability analysis[J].Procedia CIRP,2018(72):1463-1468.
[23] 杜宏益,何 林,赵先锋,等.基于ANSYS的内冷刀具流热固耦合分析(上)[J].现代制造工程,2016(6):13-16. [24] 汪木兰,左健民,朱昊,等.高速切削温度场的三维有限元建模与动态仿真[J].现代制造工程,2010(2):80-84. [25] 上海市金属切削技术协会.金属切削手册[M].上海:上海科学技术出版社,2004.
计量
- 文章访问数: 20
- HTML全文浏览量: 0
- PDF下载量: 6