Calculation of the Effective Length and the Run-Out Length of Helical Gears
-
摘要: 文章基于理论分析并应用Lagrange乘数法以及求解一个一元四次方程,推导得到了与圆柱型齿条配合的斜齿轮所需要的有效长度的解析表达式,并通过SolidWorks软件验证了其正确性。再通过求解一元四次方程,推导得到了斜齿轮的滚齿收尾部分最远端到垂直于工件轴线且包含退刀时滚刀轴线和工件轴线的最短距离线所在平面的距离,即滚齿收尾长度的解析表达式,并通过SolidWorks软件验证了其正确性。这两个表达式为与斜齿轮相关的机械产品的设计提供了重要依据。Abstract: Based on theoretical analysis, through applying the Lagrange multiplier method and solving a quartic equation of one variable, the analytic expression of the effective length of a helical gear fitted with a cylindrical rack is derived; then the correctness is verified by the SolidWorks software. Based on theoretical analysis, and through solving a quartic equation with one variable, the analytic expression of distance between the farthest end of hobbing and the plane perpendicular to the workpiece axis and containing the shortest distance line between the hobbing axis and the workpiece axis is derived, this distance is the hobbing run-out length of a helical gear. Then the correctness is verified by SolidWorks software. These two expressions provide an important basis for design of the helical gear related mechanical products.
-
Keywords:
- helical gear /
- hobbing /
- effective length /
- run-out length
-
-
[1] 刘法权.滚齿切入长度的计算[J].机械工程师,1990(5):14-15+6. [2] 刘忠朝.滚齿切入长度简化计算式与近似计算式的误差比较[J]. 机械工程师,1992(3):45. [3] 同济大学数学系.高等数学(下册)[M].6版.北京:高等教育出版社,2007. [4] 齿轮手册编委会.齿轮手册(下册)[M].2版.北京:机械工业出版社,2000.
计量
- 文章访问数: 5
- HTML全文浏览量: 0
- PDF下载量: 3