长短期记忆网络框架下转向架传动系统牵引力预测

Digital Engineering Modelling of Bogie Drives for EMU with Embedded Physical Constraint Networks

  • 摘要: 动车组故障诊断与健康管理系统(PHM)在动车组运用检修过程中发挥着重要作用。针对目前动车组PHM系统缺乏关键部件未来时刻的健康状态预测,且尚未构建全寿命周期数字工程模型的问题,该文在长短期记忆网络(LSTM)的框架下,提出转向架传动系统牵引力预测方法。该方法通过综合分析动车组车载信息无线传输系统(WTDS)实时发送至地面的转向架牵引传动系统相关参数,并结合转向架领域知识,筛选出关联参数作为LSTM的输入特征。鉴于牵引力与实时发送的相关参数之间存在紧密的因果关系,该方法将传动系统牵引力作为回归预测的输出特征,基于LSTM架构构建了动车组牵引传动系统牵引力的数字工程模型。计算结果表明,预测值与实际牵引力的均方根误差为0.865,能够较准确地预测未来时刻的牵引力,为完善动车组数字工程模型提供了有力支撑。

     

    Abstract: Prognostics and Health Management (PHM) plays an important role in the operation and maintenance process of Electric Multiple Units (EMU), and in view of the lack of PDA of key components in the future moments of the current PHM system, propose a traction force prediction method for the bogie drive system under the framework of the Long Short-Term Memory (LSTM) network. The method is based on the comprehensive analysis of the traction prediction of bogie transmission system by the Wireless Transmission Device System (WTDS) of the train set. A digital engineering model is established for traction force prediction of the traction drive system of a moving train set. The calculation results show that the root-mean-square error between the predicted value and the real value of the actual traction force is 0.865, which is a better prediction of the traction force in the future, and it is of great significance to support the construction of a perfect digital engineering model for rolling stock.

     

/

返回文章
返回