γ-TiAl合金超临界CO2微量润滑切削的换热系数预测与仿真研究

Heat Transfer Coefficient Prediction and Simulation of γ-TiAl Alloy Machining with Supercritical CO2 Minimum Quantity Lubrication

  • 摘要: 针对γ-TiAl合金切削过程中温度控制困难及传统换热模型精度不足的问题,建立了考虑scCO2物性变化的温度-压力依赖换热系数预测模型。通过引入密度比和黏度比修正项的Martin关联式,实现了切削过程中局部换热系数的准确计算。基于ABAQUS平台构建了热-力耦合的二维切削有限元模型,系统研究了切削速度( 60\sim 180 \;\mathrmm/min )对温度场演化和材料去除机制的影响规律。研究结果表明,所提出的换热系数计算方法可有效预测scCO2的冷却效果,为γ-TiAl合金的高效切削工艺优化提供了理论依据。

     

    Abstract: Addressing the challenges of temperature control and the inadequate precision of conventional heat transfer models in γ-TiAl alloy machining, this study establishes a temperature-pressure dependent heat transfer coefficient prediction model that incorporates the variable thermophysical properties of supercritical CO2(scCO2).Through the implementation of a modified Martin correlation incorporating density and viscosity ratio corrections, we achieved precise calculations of local heat transfer coefficients during the cutting process. A two-dimensional finite element model coupling thermal-mechanical effects was developed on the ABAQUS platform to systematically investigate the influence of cutting speeds on temperature field evolution and material removal mechanisms. Our findings demonstrate that the proposed heat transfer coefficient calculation methodology effectively predicts the cooling performance of scCO2, providing theoretical foundations for optimizing high-efficiency machining processes of γ-TiAl alloys.

     

/

返回文章
返回