基于相场模型的刚性材料裂纹动态扩展行为研究

Research on Dynamic Crack Propagation Behavior in Rigid Materials based on Phase-Field Model

  • 摘要: 本研究基于AT1相场模型,系统探究了载荷大小(0.1−0.4 MPa)与方向(10°−90°)对刚性材料裂纹动态扩展行为的耦合影响。通过数值计算研究,阐明了载荷条件对裂纹扩展行为的双重控制作用:载荷大小显著影响裂纹扩展速度和最终长度,且裂纹扩展呈现典型的三阶段特征(萌生-稳态-衰减),0.3 MPa为临界压力阈值;载荷方向则调控裂纹扩展的微观机制与各向异性断裂行为,90°方向扩展速度达6 mm/μs(较30°提升400%),60°−75°区间存在材料响应突变,同时高载荷(≥0.3 MPa)与垂直载荷(≥75°)会诱发裂纹分叉且分叉时间随载荷强度提前。本文研究成果为工程结构安全设计提供了坚实的理论基础,强调通过合理控制载荷参数以规避临界状态,从而有效遏制裂纹的迅猛扩展。

     

    Abstract: This study systematically explored the coupled effects of load magnitude (0.1−0.4 MPa) and direction (10°−90°) on the dynamic crack propagation behavior of rigid materials based on the AT1 phase field model. Numerical calculations revealed the dual control effect of load conditions on crack propagation behavior: the magnitude of the load significantly affects the crack propagation speed and final length, and the crack propagation exhibits a typical three-stage characteristic of initiation-steady state-decay, with 0.3 MPa as the critical pressure threshold; The direction of the load regulates the microscopic mechanism of crack propagation and anisotropic fracture behavior. The propagation speed in the 90° direction reaches 6mm/μs, which is 400% higher than that in the 30° direction. There is a sudden change in material response in the 60°−75° range, and high loads ≥0.3 MPa and vertical loads ≥75° can induce crack branching, and the branching time advances with the intensity of the load. The research results of this article provide a solid theoretical foundation for the safe design of engineering structures, emphasizing the need to avoid critical states by reasonably controlling load parameters, thereby effectively curbing the rapid expansion of cracks.

     

/

返回文章
返回